
ReqsMiner: Automated Discovery of CDN
Forwarding Request Inconsistencies and DoS

Attacks with Grammar-based Fuzzing

Linkai Zheng, Xiang Li, Chuhan Wang, Run Guo, Haixin Duan,
Jianjun Chen, Chao Zhang, Kaiwen Shen

What is a Content Delivery Network (CDN)?

❖ Infrastructure for performance and security
➢ Globally Distributed: worldwide access acceleration

➢ Cache then Forward: reduce server traffic load

➢ DDoS Protection: off-load traffic from DDoS attack

2

61.5%*
of the Alexa Top
10k is behind a

CDN

*: BuiltWith. BuiltWith Technology Lookup. https://trends.builtwith.com/CDN/Content-Delivery-Network.

Request Inconsistencies in CDNs
❖ CDNs may alter request messages, causing request inconsistencies
❖ Request inconsistencies can lead to security issues
❖ Related works:

➢ Forwarding loop attack [NDSS’ 16]
➢ RangeAmp attack [DSN’ 20]
➢ HTTP/2 bandwidth amplification attack [NDSS’ 20]

3

Attacker Server

GET /index.html HTTP/1.1
Range: 0-0

response with partial entity
(1byte)

CDN

GET /index.html HTTP/1.1
Range: 0-0

CDN

Delete

A case study for request inconsistencies in CDNs: RangeAmp Attack

response with whole entity

Our Motivation & Goals
❖ The majority of request inconsistencies have been discovered

manually in prior research
❖ This method may result in some variations in the forwarding

request being overlooked

How to systematically and efficiently mining for all
forwarding request inconsistencies in CDNs?

4

Challenges
❖ Techniques to evaluate HTTP implementations and CDN behaviors

➢ HTTP request test case generation using ABNF rules

➢ Automated testing directed towards CDNs

❖ But still have challenges…
➢ HTTP ABNF rules are unbounded, test cases generated are ineffective

➢ The cost of testing CDNs is high

➢ CDNs, as black-boxes, offer minimal feedback concerning test requests

❖ These challenges impact both the efficacy and efficiency of testing

5

ReqsMiner: a New Detecting Framework
❖ Rule Generator

➢ Combining the ABNF rules and field values
to generate an ABNF grammar tree

❖ Grammar-based Fuzzing
➢ Utilizing fuzzing with the UCT-Rand algorithm

to enhance the fuzzing efficiency

https://github.com/Konano/ReqsMiner 6

ReqsMiner: Rule Generator
❖ Field values: Predefined data stored as key-value pairs

➢ Extracted from the RFCs and actual web server logs

➢ Merge human knowledge into the generation rules

➢ Improve generation efficiency

7

Accept-Language:
en-US,en;q=0.9,en-GB;q=0.8,zh;q=0.7,ja

language = en-US / en / en-GB / zh / ja
qvalue = 0.9 / 0.8 / 0.7

Accept-Language: [language [weight] *(OWS "," OWS language [weight])]Parser

ReqsMiner: Rule Generator
❖ ABNF Parser

➢ Builds the ABNF grammar tree based on the ABNF rules

8

NodeType Indication

AND Concatenation

OR Selection

RAND Repetition

ReqsMiner: Rule Generator
❖ Rule Fusioner

➢ Integrates field values into the ABNF

grammar tree

➢ Increase the number of subtrees of the

OR nodes in the ABNF grammar tree

➢ The UCT-Rand algorithm will have more

options

9

Accept-Language = (1*8ALPHA *("-" 1*8alphanum)) / "*" / "en-US" / "en" / "en-GB" / "zh" / "ja"

❖ Challenges in Fuzzing: Lax grammar, High costs, Black box

❖ We propose a UCT-based weighted random generation algorithm (UCT-Rand)

❖ UCT is a variant of MCTS in game-playing AI

➢ Use the Upper Confidence Bounds (UCB) formula to balance exploration and

exploitation

➢ UCT-Rand uses weighted random selection rather than the argmax function to

choose the next child node during the selection phase

❖ The generation algorithm consists of 4 phases:

➢ Expansion, Selection, Simulation, and Backpropagation

ReqsMiner: Grammar-based Fuzzing

10

Expansion & Selection
❖ Expansion

➢ Recursively traverse the ABNF grammar tree

➢ AND: Traverse all subtrees

➢ OR / RAND: Go to Selection Phase

❖ Selection

➢ RAND: Randomize the number of traversals

➢ OR: Random unvisited sub-node is selected for traversal
■ If no unvisited sub-nodes, use the formula to determine traversed sub-node

❖ Simulation

❖ Backpropagation
11

Simulation & Backpropagation
❖ Expansion

❖ Selection

❖ Simulation
➢ Transform visited leaf nodes into HTTP requests

➢ Send requests to CDNs via Client

➢ Get the forwarding status of CDNs from Server

❖ Backpropagation
➢ Updates the parameters of each node in the ABNF grammar tree

based on the success of CDN forwarding

12

Evaluation of Generation Algorithms
❖ Metrics

➢ ❌ False positive and true negative rates (Difficult vulnerability determination)

➢ ✅ Effectiveness and Exploration

❖ Three distinct generation algorithms:
➢ Random: Child nodes are randomly selected

➢ UCT: Uses the argmax function to determine child nodes

➢ UCT-Rand: Uses weighted random selection of child nodes

13

Experimental results
❖ Extracted 442 ABNF rules and 63 sets of field values

➢ RFCs: 3986, 4647, 5234, 5646, 9110-9112

❖ Systematically analyzed 22 widely recognized CDN services
➢ e.g. Cloudflare, Akamai, CloudFront, Fastly…

❖ Found numerous CDN forwarding request inconsistencies

❖ However, inconsistencies do not directly signal the existence of

potential security implications
14

➢ Request Line
■ Request Method
■ Request URL Target
■ HTTP Version

➢ Header Fields
■ due to Duplicate Headers
■ caused by Adding Headers
■ caused by Removing Headers
■ caused by Altering Headers

➢ Message Body
■ caused by Removing Body
■ Transfer Encoding

❖ Extended and integrated into the threat model of a specified attack:

➢ Augmented the analyzer, enabling it to detect differences in traffic size

❖ Found 3 novel HTTP amplification attacks
➢ HeadAmp: HEAD Request-based HTTP Amplification Attack (max amplification: ~1.68M)

➢ CondAmp: Conditional Request-based HTTP Amplification Attack (max amplification: ~1.92M)

➢ AEAmp: Accept-Encoding-based HTTP Amplification Attack (max amplification: ~1K)

❖ Found 74 vuls across 19 CDN providers

Extend: HTTP Amplification Attacks

HTTP Amplification Attacks

15

Attack-1: HeadAmp Attacks
❖ CDN converts the request into a GET request when it forwards a HEAD request

➢ When a server receives a HEAD request, it should respond with the headers that would be

returned for a GET request, but without the actual body content.

❖ Attack conditions:
➢ The attacker must successfully avoid the CDN's cache (Cache missing)

➢ The target resource must be cacheable by the CDN

❖ Number of affected CDNs: 12

16

Attack-1: HeadAmp Attacks

❖ The amplification factor increases

with the size of the target resource
➢ File Size # Amplification

➢ 1MB # ~1,720

➢ 1GB # ~1,680,000

17

Attack-2: CondAmp Attacks
❖ CDN removes the conditional headers when forwarding conditional requests

➢ When a server receives a conditional requests, the response should be based on the conditions
➢ If the conditions are met, the server should respond with the requested content
➢ If the conditions are not met, the server may respond with a special status code, without content

❖ There are 5 conditional headers:
➢ If-Match, If-None-Match, If-Modified-Since, If-Unmodified-Since, If-Range

❖ Attack conditions:
➢ The attacker must successfully avoid the CDN's cache
➢ The target resource must be cacheable by the CDN

❖ Number of affected CDNs: 16

18

Attack-2: CondAmp Attacks

❖ The amplification factor increases

with the size of the target resource
➢ File Size # Amplification

➢ 1MB # ~1,950

➢ 1GB # ~1,920,000

19

Attack-3: AEAmp Attacks
❖ CDN adopts the deletion policy for handling the Accept-Encoding header

➢ When a server receives a request with an "Accept-Encoding" header, it should select an

encoding from the options available and apply to the response body.

❖ Attack conditions:
➢ The attacker must successfully avoid the CDN's cache

❖ The amplification factor is higher for resources with greater compression rates

❖ Number of affected CDNs: 4

20

Attack-3: AEAmp Attacks

❖ The amplification factor is higher

for resources with greater

compression rates
➢ File Size # Amplification

➢ 1MB # ~650

➢ 10MB # ~940

21

CDNs affected by Three HTTP Amp Attacks

Found

74

vulnerabilities across

19

CDN providers

22

Responsible Disclosure
❖ Response from affected CDN vendors.

23

FixedConfirmed

13 vendors 7 vendors 4 vendors

Received

Conclusion
❖ New Detecting Framework: ReqsMiner

➢ For the efficient discovery of CDN forwarding request inconsistencies

➢ Developed a novel UCT-based grammar-based fuzzer

❖ New Findings:
➢ Discovered 3 novel high-impact HTTP traffic amplification attacks

➢ Amplification factor can reach up to 2,000 generally, and even 1,920,000

under specific conditions.

➢ Found 74 vulnerabilities on 19 popular CDN providers

24

Thank you for listening!
Q & A

Linkai Zheng
nanoapezlk@gmail.com

Network and Information Security Lab (NISL)
Tsinghua University

