ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and DoS Attacks with Grammar-based Fuzzing

Linkai Zheng, Xiang Li, Chuhan Wang, Run Guo, Haixin Duan, Jianjun Chen, Chao Zhang, Kaiwen Shen

What is a Content Delivery Network (CDN)?

- Infrastructure for performance and security
 - Globally Distributed: worldwide access acceleration
 - Cache then Forward: reduce server traffic load
 - DDoS Protection: off-load traffic from DDoS attack

61.5%*

of the Alexa Top 10k is behind a CDN

*: BuiltWith. BuiltWith Technology Lookup. https://trends.builtwith.com/CDN/Content-Delivery-Network.

Request Inconsistencies in CDNs

- **CDNs may alter request messages**, causing request inconsistencies
- Request inconsistencies can lead to security issues
- Related works:
 - Forwarding loop attack [NDSS' 16]
 - RangeAmp attack [DSN' 20]
 - > HTTP/2 bandwidth amplification attack [NDSS' 20]

Our Motivation & Goals

- The majority of request inconsistencies have been discovered manually in prior research
- This method may result in some variations in the forwarding request being overlooked

How to **systematically** and **efficiently** mining for all forwarding request inconsistencies in CDNs?

Challenges

- Techniques to evaluate HTTP implementations and CDN behaviors
 - HTTP request test case generation using ABNF rules
 - Automated testing directed towards CDNs
- But still have challenges...
 - > HTTP ABNF rules are **unbounded**, test cases generated are **ineffective**
 - The cost of testing CDNs is high
 - CDNs, as black-boxes, offer minimal feedback concerning test requests
- These challenges impact both the efficacy and efficiency of testing

ReqsMiner: a New Detecting Framework

- Rule Generator
 - Combining the ABNF rules and field values to generate an ABNF grammar tree
- Grammar-based Fuzzing
 - Utilizing fuzzing with the UCT-Rand algorithm to enhance the fuzzing efficiency

ReqsMiner: Rule Generator

- Field values: Predefined data stored as key-value pairs
 - Extracted from the RFCs and actual web server logs
 - Merge human knowledge into the generation rules
 - Improve generation efficiency

ReqsMiner: Rule Generator

ABNF Parser

> Builds the **ABNF grammar tree** based on the ABNF rules

NodeType

Indication

ReqsMiner: Rule Generator

- Rule Fusioner
 - Integrates field values into the ABNF
 grammar tree
 - Increase the number of subtrees of the
 OR nodes in the ABNF grammar tree
 - The UCT-Rand algorithm will have more options

Accept-Language = (1*8ALPHA *("-" 1*8alphanum)) / "*" / "en-US" / "en" / "en-GB" / "zh" / "ja"

ReqsMiner: Grammar-based Fuzzing

- Challenges in Fuzzing: Lax grammar, High costs, Black box
- We propose a UCT-based weighted random generation algorithm (UCT-Rand)
- **UCT** is a variant of MCTS in game-playing AI
 - > Use the Upper Confidence Bounds (UCB) formula to balance exploration and exploitation $\pi(s) := \operatorname*{arg\,max}_{a \in A(s)} \left(V_a + \sqrt{\frac{2 \ln N_s}{N_a}} \right)$
 - a∈A(s) V IVa /
 UCT-Rand uses weighted random selection rather than the argmax function to choose the next child node during the selection phase
- The generation algorithm consists of 4 phases:
 - **Expansion, Selection, Simulation**, and **Backpropagation**

Expansion & Selection

- Expansion
 - Recursively traverse the ABNF grammar tree
 - AND: Traverse all subtrees
 - OR / RAND: Go to Selection Phase
- Selection
 - **RAND:** Randomize the number of traversals
 - OR: Random unvisited sub-node is selected for traversal
 - If no unvisited sub-nodes, use **the formula** to determine traversed sub-node
- Simulation
- Backpropagation

$$\pi(v) := \underset{v' \in v. \text{children}}{\text{weighted rand}} \left(Q(v, v') + \sqrt{\frac{2 \ln N(v)}{N(v, v')}} \right)$$

Accept-Charset

("," OWS)*n

2 ~ inf

"." ows

ows

*("." OWS)

"." OWS

NULL

Simulation & Backpropagation

- Expansion
- Selection
- Simulation
 - Transform visited leaf nodes into HTTP requests
 - Send requests to CDNs via Client
 - Get the forwarding status of CDNs from Server
- Backpropagation
 - Updates the parameters of each node in the ABNF grammar tree based on the success of CDN forwarding

Evaluation of Generation Algorithms

- Metrics
 - False positive and true negative rates (Difficult vulnerability determination)
 - Effectiveness and Exploration
- Three distinct generation algorithms:
 - Random: Child nodes are randomly selected
 - UCT: Uses the argmax function to determine child nodes
 - UCT-Rand: Uses weighted random selection of child nodes

Experimental results

- Extracted 442 ABNF rules and 63 sets of field values
 - ➢ RFCs: 3986, 4647, 5234, 5646, 9110-9112
- Systematically analyzed 22 widely recognized CDN services
 - e.g. Cloudflare, Akamai, CloudFront, Fastly...
- Found numerous CDN forwarding request inconsistencies
 - ➤ Request Line
 - Request Method
 - Request URL Target
 - HTTP Version

- ➤ Header Fields
 - due to Duplicate Headers
 - caused by Adding Headers
 - caused by Removing Headers
 - caused by Altering Headers
- However, inconsistencies do not directly signal the existence of potential security implications

- > Message Body
 - caused by Removing Body
 - Transfer Encoding

Extend: HTTP Amplification Attacks

Extended and integrated into the threat model of a specified attack:

HTTP Amplification Attacks (a) Legal but Crafted Requests (b) Little Traffic Responses Attacker (c) Legal but (c) Legal but (c) Little Traffic Responses (c) Little Traffic (c)

- > Augmented the analyzer, enabling it to detect differences in **traffic size**
- Found 3 novel HTTP amplification attacks
 - HeadAmp: HEAD Request-based HTTP Amplification Attack (max amplification: ~1.68M)
 - CondAmp: Conditional Request-based HTTP Amplification Attack (max amplification: ~1.92M)
 - AEAmp: Accept-Encoding-based HTTP Amplification Attack (max amplification: ~1K)
- Found 74 vuls across 19 CDN providers

Attack-1: HeadAmp Attacks

- CDN converts the request into a **GET** request when it forwards a **HEAD** request
 - When a server receives a HEAD request, it should respond with the headers that would be returned for a GET request, but without the actual body content.
- Attack conditions:
 - > The attacker must successfully avoid the CDN's cache (Cache missing)
 - > The target resource must be cacheable by the CDN
- Number of affected CDNs: 12

- The amplification factor increases
 with the size of the target resource
 - File Size # Amplification
 - > 1MB # ~1,720
 - ➤ 1GB # ~1,680,000

TABLE I: Amplification Factors with Different Target Resource Size of HeadAmp Attacks.

CDN	Amplification Factor					
CDN	1MB	10MB	25MB	Max (≤1GB)		
Aliyun ¹	137.52	144.05	140.49	154.20		
Azure ¹	56.70	56.56	56.48	56.70		
BunnyCDN	1119.00	11198.95	27575.01	1095296.82^{st}		
CDN77 ¹	23.79	35.54	59.12	59.28		
CDNetworks	1595.73	15599.15	39056.21	1330849.57^{st}		
ChinaNetCenter	1566.94	15667.43	38567.16	1315155.58^{st}		
Cloudflare ²	967.15	9717.67	23827.26	483332.05		
Fastly ³	1465.48	14540.97	30.79	29243.69		
Gcore	1725.39	16963.68	43094.88	1680775.18^{st}		
KeyCDN ¹	27.20	27.13	57.94	58.25		
StackPath	1607.70	15853.18	40150.99	1573951.48^{st}		
Udomain ⁴	1489.30	1488.06	1485.17	1491.31		

* Amplification factor can be greater if the file size is larger than 1GB.

¹ Terminate the request as soon as all the headers received.

 2 Terminate the request if the file size is larger than 512MB.

³ Refuse with "503 Service Unavailable" if the file size is larger than 20MB.

⁴ First request for the first 1MB of file, then response to the client with headers.

Attack-2: CondAmp Attacks

- CDN removes the **conditional headers** when forwarding **conditional requests**
 - > When a server receives a **conditional requests**, the response should **be based on the conditions**
 - > If the conditions are **met**, the server should respond with the **requested content**
 - > If the conditions are **not met**, the server may respond with a special status code, **without content**
- There are 5 conditional headers:
 - > If-Match, If-None-Match, If-Modified-Since, If-Unmodified-Since, If-Range
- Attack conditions:
 - > The attacker must successfully avoid the CDN's cache
 - > The target resource must be cacheable by the CDN
- Number of affected CDNs: 16

(b) Attack with If-None-Match.

- The amplification factor increases
 with the size of the target resource
 - File Size # Amplification
 - > 1MB # ~1,950
 - ➤ 1GB # ~1,920,000

CDN	Amplification Factor					
CDN	1MB	10MB	20MB	Max (≤1GB)		
Aliyun	1376.95	13746.82	29480.45	1143179.80^{st}		
Azure ¹	1494.58	14582.42	27178.19	27178.19		
Baidu Cloud ¹	1493.35	5132.33	5147.56	7395.95		
BunnyCDN	1197.92	11764.44	23553.99	1172958.12^{st}		
CDNetworks	1555.06	17321.00	30671.49	1721487.32^{st}		
CDNSun	1955.17	19475.55	39074.55	1927288.09^{st}		
ChinaNetCenter	1526.73	16045.67	30289.85	1511756.22^{st}		
Cloudflare ²	1015.18	10154.17	20302.83	575322.41		
Fastly ³	1831.95	18274.44	32919.45	32919.45		
Gcore	1917.59	18870.12	37761.45	1884424.91^{st}		
Huawei Cloud	1255.05	12579.15	24936.88	1235931.80^{st}		
Qiniu Cloud	1503.22	14855.64	29300.20	1355751.89^{st}		
Udomain ⁴	1631.73	1631.83	1810.82	1810.82		

Attack-3: AEAmp Attacks

- CDN adopts the **deletion policy** for handling the **Accept-Encoding** header *
 - When a server receives a request with an "Accept-Encoding" header, it should select an \succ encoding from the **options available** and apply to the response body.
- Attack conditions: *
 - The attacker must successfully avoid the CDN's cache
- The amplification factor is higher for resources with greater compression rates *
- Number of affected CDNs: 4 *

 The amplification factor is higher for resources with greater

compression rates

- > File Size # Amplification
- > 1MB # ~650
- ➢ 10MB # ~940

TABLE III: Amplification Factors with Different Target Resource Size of AEAmp Attacks.

CDN	Exploited Case	Amplification Factor			
		1MB	10MB	25MB	
Baidu Cloud	gzip;q=1	580.44	946.17	_	
CDN77	gzip	571.68	929.30	963.03	
CDNSun	gzip	650.43	972.92	984.34	
Udomain	gzip	202.03	227.95	230.10	

Fig. 12: Distribution of Amplification Factors for AEAmp Attacks with Different Target Resource Size and CDNs.

CDNs affected by Three HTTP Amp Attacks

TABLE IV: CDN Vendors Vulnerable to Three HTTP Amplification Attacks.

CDN	Head-	d- CondAmp					AE-
CDN	Amp	$\mathbf{M}.^1$	NM. ²	MS. ³	UnS. ⁴	R. ⁵	Amp
Akamai					\checkmark		
Aliyun	\checkmark		\checkmark	\checkmark		\checkmark	
Azure	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Baidu Cloud		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BunnyCDN	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
CDN77	\checkmark						\checkmark
CDNetworks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
CDNSun		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
ChinaCache						\checkmark	
ChinaNetCenter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Cloudflare	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
CloudFront				\checkmark			
Fastly	\checkmark		\checkmark	\checkmark		\checkmark	
Gcore	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Huawei Cloud		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
KeyCDN	\checkmark						
Qiniu Cloud			\checkmark	\checkmark			
StackPath	\checkmark						
Udomain	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\checkmark : The target CDN is y	ulnerable.	1 If-Matcl	$h_{\rm t}$ $2_{\rm Tf-N}$	one-Match.	3 If-Modif	ied-Sin	ice.

Found

74

vulnerabilities across

CDN providers

19

✓: The target CDN is vulnerable. 1 If-Match. 2 If-None-Match. 3 If-Modified-Since. 4 If-Unmodified-Since. 5 If-Range.

Response from affected CDN vendors.

- New Detecting Framework: ReqsMiner
 - > For the efficient discovery of CDN forwarding request inconsistencies
 - Developed a novel UCT-based grammar-based fuzzer
- New Findings:
 - Discovered 3 novel high-impact HTTP traffic amplification attacks
 - Amplification factor can reach up to 2,000 generally, and even 1,920,000 under specific conditions.
 - Found 74 vulnerabilities on 19 popular CDN providers

Thank you for listening! Q & A

Linkai Zheng <u>nanoapezlk@gmail.com</u> Network and Information Security Lab (NISL) Tsinghua University

