ReqsMiner: Automated Discovery of CDN
Forwarding Request Inconsistencies and DoS
Attacks with Grammar-based Fuzzing

Linkai Zhenq, Xiang Li, Chuhan Wang, Run Guo, Haixin Duan,
Jianjun Chen, Chao Zhang, Kaiwen Shen

@ Wwhat is a Content Delivery Network (CDN)?

/7

* Infrastructure for performance and security
> Globally Distributed: worldwide access acceleration 6 1 50/0*
[]

> (Cache then Forward: reduce server traffic load

> DDoS Protection: off-load traffic from DDoS attack of the Alexa Top
10k is behind a
CDN

*: BuiltWith. BuiltWith Technology Lookup. https://trends.builtwith.com/CDN/Content-Delivery-Network.

W@ Request Inconsistencies in CDNs

7
0’0

K/

CDNs may alter request messages, causing request inconsistencies
% Request inconsistencies can lead to security issues

o

< Related works:

> Forwarding loop attack [NDSS’ 16]
> RangeAmp attack [DSN’ 20]

> HTTP/2 bandwidth amplification attack [NDSS’ 20]

GET /index.html HTTP/1.1 Delete

| GET /index.html HTTP/1.1
Range: 0-0 -

Range+6-06

response with partial entity (CHEHH
Attacker (1byte) CDN

response with whole entity

Server
A case study for request inconsistencies in CDNs: RangeAmp Attack

‘ Our Motivation & Goals

The majority of request inconsistencies have been discovered
manually in prior research

This method may result in some variations in the forwarding
request being overlooked

X/
2 %4

X/
2 %4

How to systematically and efficiently mining for all
forwarding request inconsistencies in CDNs?

‘?

T 9
& A

W challenges

s Techniques to evaluate HT TP implementations and CDN behaviors

> HTTP request test case generation using ABNF rules
> Automated testing directed towards CDNs

7/

s But still have challenges...
> HTTP ABNF rules are unbounded, test cases generated are ineffective

> The cost of testing CDNs is high

> (CDNs, as black-boxes, offer minimal feedback concerning test requests

K/

% These challenges impact both the efficacy and efficiency of testing

W RegsMiner: a New Detecting Framework

% Rule Generator % Grammar-based Fuzzing
> Combining the ABNF rules and field values > Utilizing fuzzing with the UCT-Rand algorithm
to generate an ABNF grammar tree to enhance the fuzzing efficiency
Sl R Rl sialkaR o - % 5 e T B NN EGETEN MR DEOMEIEN BN PR N W %

~
~
=
et
®
p)
]
=
®
=
a8
=
=)
=

i
.
ol O
ol

Requests ,'

I

I

i

I : i

Client ; l

RFCs ! ABNFRules ABNF Parser 2 Clen 7\

- RS BT
................. resseesseeeen

— I o_v_ I Request : CDNs j : Difference :

@ 1 ©— F] j Generator | S Analyzer
............... » O == 1 O— niiin I
g2 T BT S A S [R=} .
i
Web Server Logs | Field Values Rule Fusioner j ~ Forwarding ! Server , Logs I
\ - " Status Ve --m------- " /

https://github.com/Konano/ReqsMiner

W RegsMiner: Rule Generator

7/

s Field values: Predefined data stored as key-value pairs

> Extracted from the RFCs and actual web server logs ==

> Merge human knowledge into the generation rules

> Improve generation efficiency

S =)
S42 s=

Web Server Logs Field Values

Accept-Language:
en-US,en;q=0.9,en-GB;q=0.8,zh;q=0.7,ja

Parser l Accept-Language: [language [weight 1 *(OWS "," OWS language [weight])]

language = en-US /en/en-GB/zh/ja
qvalue = 0.9/0.8/0.7

W RegsMiner: Rule Generator

T NodeType Indication
> Builds the ABNF grammar tree based on the ABNF rules

AND Concatenation

Accept-Charset

OR Selection

RAND Repetition

2*(OWS "," OWS ((token /™") [weight]))

W RegsMiner: Rule Generator
% Rule Fusioner ~ ;"*”“
e

v

v
o Y| e

v
> |ntegrates field values into the ABNF ﬂ

grammar tree BALPHA
> |ncrease the number of subtrees of the
OR nOdeS in the ABNF grammar tree ALPHA NULL "." 1*8alphanum 2*("-" 1*8alphanum)

2 ~inf

> The UCT-Rand algorithm will have more ?
options D

“ n B

Accept-Language = (1*8ALPHA *("-" 1*8alphanum)) / "*" / "en-US" / "en" / "en-GB" / "zh" / "ja"

W RegsMiner: Grammar-based Fuzzing

7

% Challenges in Fuzzing: Lax grammar, High costs, Black box

K/

% We propose a UCT-based weighted random generation algorithm (UCT-Rand)
s UCT is a variant of MCTS in game-playing Al

> Use the Upper Confidence Bounds (UCB) formula to balance exploration and

exploitation 2 1n N,
mw(s) :=argmax | V, + 4/ ———
acA(s) Nq

> UCT-Rand uses weighted random selection rather than the argmax function to

choose the next child node during the selection phase

7

s The generation algorithm consists of 4 phases:

> Expansion, Selection, Simulation, and Backpropagation

Accept-Charset

® Expansion & Selection =2

1 >1

s Expansion ﬂ ﬁ

> Recursively traverse the ABNF grammar tree

((charset/ ™") [weight])

> AND: Traverse all subtrees
> OR/RAND: Go to Selection Phase
% Selection

> RAND: Randomize the number of traversals

> OR: Random unvisited sub-node is selected for traversal

m |f no unvisited sub-nodes, use the formula to determine traversed sub-node

< Simulation

7(v) := weighted rand | Q(v,v") +

v’ €v.children

s Backpropagation

W simulation & Backpropagation

% Ex pans ion ’ Grammar-based Fuzzing

235 Eclﬁ;tj i Dl
Qe L =g

@, Requests ,'

< Selection

< Simulation

- em o o o o Em Em Em Em =m P

<D
CDNs | Difference

Generator ——\ Analyzer
O—

A L= A

O — i

> Get the forwarding status of CDNs from Server , Forwarding® Server s Logs
~

> Transform visited leaf nodes into HT TP requests Request

> Send requests to CDNs via Client

Status @ = e e e e - - Y,

s Backpropagation
> Updates the parameters of each node in the ABNF grammar tree

based on the success of CDN forwarding

W Evaluation of Generation Algorithms

s Metrics
> X False positive and true negative rates (Difficult vulnerability determination)

> Effectiveness and Exploration

K/

s Three distinct generation algorithms:

> Random: Child nodes are randomly selected

> UCT: Uses the argmax function to determine child nodes

> UCT-Rand: Uses weighted random selection of child nodes
— Uchrand

-
<
U
=3
o

60%

40%

Effective Ratio

—— Random
2500 ucr
—— UCT-Rand

20%

Number of Tree Nodes Explored
g
o
o

0% + T T T 0
"0 50 100 150 200 250 300 0 50 100 150 200 250 300

Rounds (100 requests per round) Rounds (100 requests per round)

W Experimental results

% Extracted 442 ABNF rules and 63 sets of field values
> RFCs: 3986, 4647, 5234, 5646, 9110-9112

% Systematically analyzed 22 widely recognized CDN services
> e.g. Cloudflare, Akamai, CloudFront, Fastly...

% Found numerous CDN forwarding request inconsistencies

> Request Line > Header Fields > Message Body
m Request Method
m Request URL Target
HTTP Version

due to Duplicate Headers m caused by Removing Body
caused by Adding Headers m Transfer Encoding

caused by Removing Headers

caused by Altering Headers

% However, inconsistencies do not directly signal the existence of

potential security implications

W Extend: HTTP Amplification Attacks

/7

% Extended and integrated into the threat model of a specified attack:
HTTP Amplification Attacks

@ Legal but @ Attack Requests @v
Crafted Requests R Altered by CDN . [o=mm
- | Q= 1nmn
O @ Little Traffic @ Large Traffic O — nun
Responses Responses ..
Attacker CDN Origin

> Augmented the analyzer, enabling it to detect differences in traffic size

/7

% Found 3 novel HTTP amplification attacks

> HeadAmp: HEAD Request-based HTTP Amplification Attack (max amplification: ~1.68M)
> CondAmp: Conditional Request-based HT TP Amplification Attack (max amplification: ~1.92M)
> AEAmp: Accept-Encoding-based HT TP Amplification Attack (max amplification: ~1K)

% Found 74 vuls across 19 CDN providers

W Attack-1: HeadAmp Attacks

% CDN converts the request into a GET request when it forwards a HEAD request
> When a server receives a HEAD request, it should respond with the headers that would be

returned for a GET request, but without the actual body content.

< Attack conditions:

> The attacker must successfully avoid the CDN's cache (Cache missing)

> The target resource must be cacheable by the CDN

< Number of affected CDNs: 12

@ HEAD /test.png HTTP/1.1 ® /test.png HTTP/1.1 e
[[e [RIENND
- - — O — 1inin
O @ response without msg body ® response with msg body 7 y————
small traffic large traffic
CDN Origin

Attacker

W Attack-1: HeadAmp Attacks

TABLE I: Amplification Factors with Different Target Re-
source Size of HeadAmp Attacks.

Amplification Factor

CDN 1MB 10MB 25MB Max (<IGB)

o . . . —
% The amplification factor increases Ay 13752 14405 14049 154.20
Azure! 56.70 56.56 56.48 56.70
_) BunnyCDN 1119.00 11198.95 27575.01 1095296.82°

1
with the size of the target resource 7 23.79 3551 5912 59.28
CDNetworks | 1595.73 15599.15 39056.21 1330849.57
_ , . ChinaNetCenter | 1566.94 15667.43 38567.16 1315155.58"
> File Size # Amplification Cloudfiare? 967.15 9717.67 23827.26 483332.05
Fastly? 1465.48 14540.97 30.79 29243.69
> 1MB # ~1,720 Geore 172539 16963.68 43094.88 1680775.18
KeyCDN 27.20 27.13 57.94 58.25
StackPath 1607.70 15853.18 40150.99 1573951.48"
> 1GB # ~1,680,000 Udomain* 1489.30 1488.06 1485.17 1491.31

* Amplification factor can be greater if the file size is larger than 1GB.

! Terminate the request as soon as all the headers received.

2 Terminate the request if the file size is larger than 512MB.

3 Refuse with “503 Service Unavailable” if the file size is larger than 20MB.
4 First request for the first IMB of file, then response to the client with

headers.

W Attack-2: CondAmp Attacks

% CDN removes the conditional headers when forwarding conditional requests
> When a server receives a conditional requests, the response should be based on the conditions
> |f the conditions are met, the server should respond with the requested content
> If the conditions are not met, the server may respond with a special status code, without content
% There are b conditional headers:
> If-Match, If-None-Match, If-Modified-Since, If-Unmodified-Since, If-Range
% Attack conditions:
> The attacker must successfully avoid the CDN's cache
> The target resource must be cacheable by the CDN
Number of affected CDNs: 16

K/
L X4

@ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1 ———
If-None-Match: <ETag>

-~ Q= 111111

@ @ 304 response ® 200 response g: ::::::
small traffic large traffic
Attacker CDN Origin

W Attack-2: CondAmp Attacks

(b) Attack with If-None—-Match.

Amplification Factor

CDN

- . . 1MB 10MB 20MB Max (<1GB)

’ ——
% The amplification factor increases -
Aliyun 1376.95 13746.82 29480.45 1143179.80
. . Azure! 1494.58 14582.42 27178.19 27178.19

f th r r r

Wlth the SIZe O t € ta get esource Baidu Cloud! |1493.35 5132.33 5147.56 7395.95
*
. . . . BunnyCDN 1197.92 11764.44 23553.99 1172958.12
> File Size # Ampllﬁcat|on CDNetworks | 1555.06 17321.00 30671.49 1721487.32"
%
CDNSun 1955.17 19475.55 39074.55 1927288.09
> 1MB # ~1,950 A .
ChinaNetCenter | 1526.73 16045.67 30289.85 1511756.22
loudfiare? 1015.18 10154.17 20302. 22.41

> 1GB#~1,920,000 Cloudflare 015.18 1015 7 20302.83 5753
Fastly® 1831.95 18274.44 32919.45 32919.45
Gcore 1917.59 18870.12 37761.45 1884424.91°
Huawei Cloud |1255.05 12579.15 24936.88 1235931.80"
Qiniu Cloud 1503.22 14855.64 29300.20 1355751.89"
Udomain® 1631.73 1631.83 1810.82 1810.82

@ Attack-3: AEAmp Attacks

s CDN adopts the deletion policy for handling the Accept-Encoding header
> When a server receives a request with an "Accept-Encoding" header, it should select an
encoding from the options available and apply to the response bodly.
% Attack conditions:
> The attacker must successfully avoid the CDN's cache

s The amplification factor is higher for resources with greater compression rates

< Number of affected CDNSs: 4

@ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1 =
Accept-Encoding: gzip
- - Q= 111111
) - .— o_ e —
O @ response with compress ® response without compress O—
small traffic large traffic
Attacker CDN Origin

@ Attack-3: AEAmp Attacks

TABLE III: Amplification Factors with Different Target Re-
source Size of AEAmp Attacks.

Amplification Factor

o . . . CDN Exploited Case IMB 10MB 25MB
s The amplification factor is higher Buidu Cloud | gzipra-1 | 58044 94617 —
CDN77 gzip 57168 92930 963.03
. CDNSun gzip 65043 97292 984.34
for resources Wlth greater Udomain gzip 202.03 22795 230.10
compression rates . ‘ e
> File Size # Amplification : m — sl
% —— CDNSun
> 1MB # ""650 "_E_ 400 1 —— Udomain
£
<

> 10MB # ~940 T

123456 7 8 91011121314 151617 18 19 20 21 22 23 24 25
File Size of Target Resource (MB)

Fig. 12: Distribution of Amplification Factors for AEAmp
Attacks with Different Target Resource Size and CDNs.

W CDNs affected by Three HTTP Amp Attacks

TABLE IV: CDN Vendors Vulnerable to Three HTTP Ampli-
fication Attacks.

Found

Head- CondAmp AE-
Amp M.! N.-M2 M-S} Un-S* RS Amp

Akamai v 7 4
Aliyun v

Azure

Baidu Cloud
BunnyCDN
CDN77
CDNetworks
CDNSun
ChinaCache
ChinaNetCenter
Cloudflare
CloudFront
Fastly

Gcore

Huawei Cloud
KeyCDN

Qiniu Cloud
StackPath
Udomain

CDN

& <

vulnerabilities across

19

CDN providers

BB <F
< <B <

<B B <l<F <
\
<E <l <B <E < <B{ <&

<8

<8
<<BV<E<E B <

N BN EN- BN RN B BN RN BN

8 B B <B<E

v v v v v
3

v The target CDN is vulnerable. I ¢ Maten. If-None-Match. If-Modified-Since.
4 If-Unmodified-Since. 5 If-Range. 22

™~

W Responsible Disclosure

/7

% Response from affected CDN vendors.

Received Confirmed Fixed
| | |
13 vendors 7 vendors 4 vendors

__

r S Vicrosoft @'é OBAIDUAICLOUDE

Azure

‘ Conclusion

/7

% New Detecting Framework: ReqsMiner

> For the efficient discovery of CDN forwarding request inconsistencies

> Developed a novel UCT-based grammar-based fuzzer

/7

% New Findings:

> Discovered 3 novel high-impact HT TP traffic amplification attacks

> Amplification factor can reach up to 2,000 generally, and even 1,920,000
under specific conditions.

> Found 74 vulnerabilities on 19 popular CDN providers

Thank you for listening!

Q&A

Linkai Zheng

nanoapezlk@gmail.com
Network and Information Security Lab (NISL)
Tsinghua University

